Abstract
In this paper, we propose inertial Halpern-type algorithms involving a quasi-monotone operator for approximating solutions of variational inequality problems which are fixed points of quasi-nonexpansive mappings in reflexive Banach spaces. We use Bregman distance functions to enhance the efficiency of our algorithms and obtain strong convergence results, even in cases where the Lipschitz constant of the operator involved is unknown a priori. Furthermore, we illustrate the practical applicability of our methods through numerical experiments. Notably, our algorithms excel when compared to recent techniques in the literature. Of particular significance is their successful application in restoring computed tomography medical images that have been affected by motion blur and random noise. Our algorithms consistently outperform established state-of-the-art methods in all conducted experiments, showcasing their competitiveness and potential to advance variational inequality problem-solving, especially in the field of medical image recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.