Abstract

Results of particle-in-sell simulations of ion acceleration by using the KARAT code in a cylindrical geometry in the problem formulation corresponding to an actual experiment with a low-energy vacuum discharge with a hollow cathode are presented. The fundamental role of the formed virtual cathode is analyzed. The space-time dynamics of potential wells related to the formation of the virtual cathode is discussed. Quasi-steady potential wells (with a depth of ∼80% of the applied voltage) cause acceleration of deuterium ions to energies about the electron beam energy (∼50 keV). In the well, a quasi-isotropic velocity distribution function of fast ions forms. The results obtained are compared with available data on inertial electrostatic confinement fusion (IECF). In particular, similar correlations between the structure of potential wells and the neutron yield, as well as the scaling of the fusion power density, which increases with decreasing virtual cathode radius and increasing potential well depth, are considered. The chosen electrode configuration and potential well parameters provide power densities of nuclear DD fusion in a nanosecond vacuum discharge noticeably higher than those achieved in other similar IECF systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call