Abstract
We study the transportation and rotational dynamics of a finite-sized spheroidal particle in a linear monochromatic surface gravity wave to better understand the transport dynamics of microplastics in oceanic flows. A spheroidal particle, modeled as an anisotropic tracer, attains preferential alignment in a linear wavy flow. We analyze the drift of a finite-size anisotropic particle and find that the horizontal drift of such particles can either increase or decrease depending on the initial orientation and the ratio of the size of the particle to the wavelength of the background wave field. Next, we derive the finite-size modification to the preferred alignment of the spheroidal particle with the flow propagation direction of the wave. In most scenarios, particles in the ocean can have a wide range of densities and are classified into positively and negatively buoyant particles. Negatively buoyant particles settle in a wavy flow with complex trajectories. We study the effect of the orientation and size of such particles on settling and show that the aspect ratio of the particle could alter the trajectory in the wave propagation direction. We also obtain a non-zero vertical Stokes drift. Finally, we consider the effects of fluid and particle inertia in our coupled evolution equations and study the drift and the orientation of an anisotropic particle in a wavy flow field. We demonstrate that considering such an effect could provide a complete picture of the transport and dynamics of microplastics in the upper part of the ocean that can be described more accurately. 
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.