Abstract

The deposition of aerosol particles onto filter fibers under the effect of inertial forces is studied in a wide range of Stokes numbers (St) at Reynolds numbers close to unity (Re ∼ 1). Coefficients η of the capture of inertial particles with finite sizes in model filters composed of parallel rows of identical parallel fibers located normal to the direction of a flow are determined based on the numerical solution of the Navier-Stokes and particle motion equations. It is shown that, at Re < 1 and a constant particle-to-fiber radius ratio, R = rp/a, number St uniquely characterizes capture coefficients η for particles with different densities, while, at Re ≥ 1, the capture coefficient depends on both St and Re. At constant R and St values, the larger Re the higher the capture coefficient. The influence of the structure of the model filter on pressure drop Δp and η is investigated. A nonuniform arrangement of fibers in rows is shown to increase the Δp/U ratio at lower Re values and to make the η -St dependence more pronounced than that for systems of uniformly ordered fibers. The results of calculations agree with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call