Abstract

Current profiles were measured in the northern North Sea during the autumnal breakdown of stratification (September and October) in 1998. The site was in 110 m of water and the depth-averaged M 2 tidal current amplitudes were about 0.15 m s −1. The surface and bed mixed layers were initially well separated. The measurements were made principally with Acoustic Doppler Current Profilers (ADCP) which gave good coverage of the majority of the water column. During a two-month period several episodes of inertial currents were observed, exhibiting a range of responses some of which corresponded very closely to that predicted by theory. The structure of the inertial currents was primarily first mode baroclinic, with no inertial energy in the depth-averaged current. This implies that the currents in the lower layer are strongly linked to those in the surface layer and also that dissipation could be generated by bed friction, but the nature of the link is unclear. The level of least motion coincided with the thermocline. Since the currents in the upper and lower layers are 180° out of phase, large shears can occur across the thermocline; occasionally the bulk Richardson number determined with a four-metre vertical resolution was less than one. Turbulence measurements suggest that when large inertial current shears are present across the thermocline, which exceed the buoyancy frequencies, then mixing within and across the thermocline is significant. Future experiments should concentrate on enhanced dissipation measurements around the thermocline and higher spatial resolution time series measurements of current and density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.