Abstract

Abstract The Vlasov kinetic equation is solved using gyrokinetic theory and the dielectric tensor for non-relativistic, magnetized, bi-Maxwellian plasmas is calculated. A generalized dispersion relation for kinetic Alfven waves is derived taking into account the density inhomogeneity and temperature anisotropy. The modified dispersion relation thus obtained is then used to examine the propagation characteristics of the kinetic Alfven waves in the inertial regime. The importance of density inhomogeneity and temperature anisotropy for Solar corona is highlighted. The growth rate of the inertial Alfven wave proves that density inhomogeneity acts as a source of free energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call