Abstract
The group selection debate of the 1960s made it clear that evolution does not necessarily increase population performance. Individuals can be selected to have traits that diminish a common good and make population persistence difficult. At the extreme, the discrepancy between levels of selection is predicted to make traits evolve towards values at which a population can no longer persist (evolutionary suicide). Dispersal and prospecting are prime examples of traits that have a strong influence on population persistence under environmental and demographic stochasticity. Theory predicts that an 'optimal' dispersal strategy from a population point of view can differ considerably from that produced by individual-level selection. Because dispersal is frequently risky or otherwise costly, individuals are often predicted to disperse less than would be ideal for population performance (persistence or size). We define this discrepancy as 'inertia' and examine current knowledge of its occurrence and effects on population dynamics in nature. We argue that inertia is potentially widespread but that a framework is currently lacking for predicting precisely the extent to which it has a real influence on population persistence. The opposite of inertia, 'hypermobility' (more dispersal by individuals than would maximize population performance) remains a possibility: it is known that highest dispersal rates do not lead to best expected population performance, and examples of such high dispersal evolving exist at least in the theoretical literature. We also show, by considering prospecting behaviour, that similar issues arise in species with advanced cognitive and learning abilities. Individual prospecting strategies and the information acquired during dispersal are known to influence the decisions and therefore the fate of individuals and, as a corollary, populations. Again, the willingness of individuals to sample environments might evolve to levels that are not optimal for populations. This conflict can take intriguing forms. For example, better cognitive abilities of individuals may not always lead to better population-level performance. Simulation studies have found that 'blind' dispersal can lead to better connected metapopulations than cognitively more advanced habitat choice rules: the latter can lead to too many individuals sticking to nearby safe habitat. The study of the mismatch between individual and population fitness should not be a mere intellectual exercise. Population managers typically need to take a population-level view of performance, which may necessitate human intervention if it differs from what is selected for. We conclude that our knowledge of inertia and hypermobility would advance faster if theoretical studies--without much additional effort--quantified the population consequences of the evolving traits and compared this with hypothetical (not selectively favoured) dispersal rules, and if empirical studies were similarly conducted with the differing levels of selection in mind.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.