Abstract

SummaryThis paper addresses the inertia‐free attitude control problem for flexible spacecraft in the presence of inertia uncertainties, external disturbances, actuator faults, measurement errors, and input magnitude and rate constraints (MRCs). By analyzing the influence of external disturbances, faulty signals, and actual inertial matrix, a lumped disturbance is reconstructed to facilitate the controller design. Then, a new intermediate observer is developed to estimate the attitude and modal information and the lumped disturbance. The Lyapunov stability analysis shows that the developed controller can achieve the objectives of the attitude stabilization and vibration suppression with input MRCs. Finally, numerical simulations are performed to demonstrate the effectiveness and superiority of the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.