Abstract
The dynamic properties of an industrial Squeeze-Film Damper (SFD) bearing design are described using the well-known perturbation approach, where the reaction forces induced by small movements away from the position of equilibrium are expanded into a Taylor series in terms of displacement, velocity, and acceleration. Although generally negligible, the acceleration term can become significant in SFD bearings when inertia effects in the damper lands are enhanced by the flow in a central circumferential oil supply groove. By using a bulk flow approximation in the oil supply groove an explicit expression is derived for the acceleration term. Experimental results confirm the significance of the oil supply groove geometry and appear to validate the bulk flow approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.