Abstract

Inertia effects are seldom considered in morphological modeling, and most of the transport models were developed from laboratory experiments in steady uniform flow conditions. This paper considers first the hysteresis effects in transient flows between discharge, velocity, and bottom shear stress. These effects can be taken into account as far as the complete shallow-water equations are used. Secondly, inertia effects linked to the sediment response to acting forces are considered. Three types of models are investigated: (i) sediment movement instantaneously adapting to hydrodynamic changes, (ii) spatial or temporal lag laws to give space or time to the sediments to progressively reach the transport capacity, and (iii) a two-layer model, able to account for the inertia of the sediment layer. Finally, three examples are presented: a scour hole downstream of an apron, a jump over a mobile bed, and a dam-break wave. Inertia effects appear significant in the modeling, especially the latter case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.