Abstract

The work-in-progress on the conjectured origin of the inertia reaction force (Newton’s Second Law) in quantum vacuum fields is discussed and reviewed. It is first pointed out that the inertia reaction force is not a fundamental effect at the particle level, but an emergent macroscopic phenomenon that appears in large condensed aggregates. A brief sketch of the analysis that leads to the derivation of the electromagnetic vacuum contribution to the inertia reaction force is presented, in several complementary ways and also in a fully covariant way. All derivations were initially done within Stochastic Electrodynamics and more recently, we briefly report here for the first time, they have been reformulated within ordinary Quantum Electrodynamics. Analysis leading to an expression for, what we can call, the vacuum electromagnetic field contribution to the inertia reaction force, is briefly reviewed. As an example, the case of an ordinary electromagnetic (microwave) cavity is briefly mentioned with its associated very small but nonnegligible inertial mass of the interior of the microwave cavity case (i.e., the cavity alone not considering its walls). Next, it is briefly mentioned that the results for inertial mass can be passed to passive gravitational mass. Thus some light is thrown on the origin of the Weak Equivalence Principle, which equates inertial mass to passive gravitational mass. Finally we mention the derivation of Newton’s gravitational force expression that easily follows from this analysis. Unfortunately, all this has been accomplished just for the electromagnetic vacuum case, as contribution by the other quantum vacuum fields have not been calculated. This specially refers to the gluonic vacuum, which presumably contributes the lion’s share of the inertia reaction force in ordinary objects. Furthermore, the origin of what constitutes active gravitational mass has still not been considered within this approach. I.e., why a massive object “bends” space-time still remains unexplained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.