Abstract
The virtual synchronous generator (VSG) control is a promising solution for the grid-forming converters to enhance the inertia of the converter-based power grid. The virtual inertia and output impedance of the VSG are the important behaviors to be focused. However, the virtual inertia of grid-forming converters may cause active power oscillation due to the interaction with the power inertia of grid through the low-frequency band grid impedance. Besides, the resonance can be also triggered by the interaction between middle-frequency impedance of power grid and output impedance of converter. In order to test the stability of grid-forming converter, accurate emulation of grid behaviors from more aspects, including inertia and impedance under wider frequency ranges, is becoming critical. This article proposes a grid emulation method to mimic the inertia and impedance characteristics of power grid, targeting for the stability test of grid-forming converter under multifrequency bands. A high-switching-frequency converter and a low-switching-frequency converter are adopted in the proposed emulator structure to achieve both high capability in respect to control bandwidth and power level. Moreover, the virtual impedance control is integrated with the VSG control to emulate the line impedance and inertia within relatively wider frequency ranges. The realization of virtual impedance is achieved without derivation terms nor low pass filter. Finally, the performance of the proposed emulator is verified by various simulations and experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.