Abstract

In this study, we demonstrate a forming technique that enables us to control whether the switching layer of a Pt/In2O3/TiN device is near the Pt electrode or the TiN electrode. This means that In2O3-based resistive random access memory (RRAM) can be switched at either the active or inert electrode. The resistive switching current–voltage (I–V) curves for both electrodes exhibit stable memory windows. Through material and electrical analyses, we found that the reason for switching at the inert electrode is the oxygen-vacancy-rich characteristic of In2O3. Finally, a physical model is proposed to explain this phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call