Abstract

Aqueous zinc ion batteries (AZIBs) are considered promising energy storage devices because of their high theoretical energy density and cost-effectiveness. However, the ongoing side reactions and zinc dendrite growth during cycling limit their practical application. Herein, trisodium methylglycine diacetate (Na3MGDA) additive containing the additional inert group methyl is introduced for Zn anode protection, and the contribution of methyl as an inert group to the Zn anode stability is discussed. Experimental results reveal that the methyl group with various effects enhances the interaction between the polar groups in Na3MGDA and the Zn2+/Zn anode. Thus, the polar carboxylate negative ions in MGDA anions can more easily modify the solvation structure and adsorb on the anode surface in situ to establish a hydrophobic electrical double layer (EDL) layer with steric hindrance effects. Such the EDL layer exhibits a robust selectivity for Zn deposition and a significant inhibition of parasitic reactions. Consequently, the Zn||Zn symmetric battery presents 2375h at 1mAcm-2, 1mAhcm-2, and the Zn||V6O13 full battery provides 91% capacity retention after 1300 cycles at 3Ag-1. This study emphasizes the significant role of inert groups of the additive on the interfacial stability during the plating/stripping of high-performance AZIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.