Abstract
This article presents the classification of Hadamard matrices of order 40 with automorphisms of order 19. We determine the 2-(19,9,8) and 2-(20,10,9) designs with automorphisms of order 19. These designs are embedded into 2-(39,19,9) designs which are then extended to 3-(40,20,9) designs. We get 33 non-isomorphic 2-(39,19,9) designs out of which 18 designs gives non-isomorphic 3-(40,20,9) designs and hence 18 inequivalent Hadamard matrices of order 40 with automorphisms of order 19.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.