Abstract
The inequivalence of substitution pair positions of naphthalene ring has been investigated by a theoretical measurement of hydrogen bond strength, aromaticity, and excited state intramolecular proton transfer (ESIPT) reaction as the tools in three substituted naphthalene compounds viz 1-hydroxy-2-naphthaldehyde (HN12), 2-hydroxy-1-naphthaldehyde (HN21), and 2-hydroxy-3-naphthaldehyde (HN23). The difference in intramolecular hydrogen bond (IMHB) strength clearly reflects the inequivalence of substitution pairs where the calculated IMHB strength is found to be greater for HN12 and HN21 than HN23. The H-bonding interactions have been explored by calculation of electron density ρ(r) and Laplacian ∇(2) ρ(r) at the bond critical point using atoms in molecule method and by calculation of interaction between σ* of OH with lone pair of carbonyl oxygen atom using NBO analysis. The ground and excited state potential energy surfaces (PESs) for the proton transfer reaction at HF (6-31G**) and DFT (B3LYP/6-31G**) levels are similar for HN12, HN21 and different for HN23. The computed aromaticity of the two rings of naphthalene moiety at B3LYP/6-31G** method also predicts similarity between HN12 and HN21, but different for HN23.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.