Abstract

This paper presents a new result in the analysis and implementation of path constraints in optimal control problems (OCPs). The scheme uses the well-known concept of discretizing path constraints on a finite number of points, yielding a set of interior-time point constraints replacing the original path constraints. The approach replaces the original OCP by a sequence of OCPs which is shown to converge in a finite number of steps to the solution of the original path constrained problem with ε-accuracy. Numerical results, verifying the theoretical analysis, are presented. The method is shown to be effective and promising for future applications, particularly in control vector parameterization implementations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.