Abstract
ABSTRACTThe standard Kalman filter cannot handle inequality constraints imposed on the state variables, as state truncation induces a nonlinear and non-Gaussian model. We propose a Rao-Blackwellized particle filter with the optimal importance function for forward filtering and the likelihood function evaluation. The particle filter effectively enforces the state constraints when the Kalman filter violates them. Monte Carlo experiments demonstrate excellent performance of the proposed particle filter with Rao-Blackwellization, in which the Gaussian linear sub-structure is exploited at both the cross-sectional and temporal levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.