Abstract

Relatively recently, K.M.R. Audenaert (2010), R.A. Horn and F. Zhang (2010), Z. Huang (2011), A.R. Schep (2011), A. Peperko (2012), D. Chen and Y. Zhang (2015) have proved inequalities on the spectral radius and the operator norm of Hadamard products and ordinary matrix products of finite and infinite non-negative matrices that define operators on sequence spaces. In the current paper we extend and refine several of these results and also prove some analogues for the numerical radius. Some inequalities seem to be new even in the case of $n\times n$ non-negative matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.