Abstract

We obtain new inequalities of different metrics for differentiable periodic functions. In particular, for p, q ∈ (0, ∞], q > p, and s ∈ [p, q], we prove that functions \(x \in L_\infty ^{{\text{ }}r}\) satisfy the unimprovable inequality $$|| (x-c_{s+1} (x))_{\pm} ||_q \leqslant \frac{|| (\phi_r)_{\pm} ||_q}{|| \phi_r ||_p^{\frac{r+1/q}{r+1/p}}} || x-c_{s+1}(x) ||_p^{\frac{r+1/q}{r+1/P}} || x^(r) ||_\infty^{\frac{1/p-1/q}{r+1/p}},$$ where ϕ r is the perfect Euler spline of order r and c s + 1(x) is the constant of the best approximation of the function x in the space L s + 1. By using the inequality indicated, we obtain a new Bernstein-type inequality for trigonometric polynomials τ whose degree does not exceed n, namely, $$|| (\tau^(k))_{\pm} ||_q \leqslant n^{k+1/p-1/q} \frac{|| (\cos(\cdot))_{\pm} ||_q}{|| \cos(\cdot) ||_p} || \tau ||_p,$$ where k ∈ N, p ∈ (0, 1], and q ∈ [1, ∞]. We also consider other applications of the inequality indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.