Abstract
We give several criteria that are equivalent to the basic singular value majorization inequality (1.1) that is common to both the usual and Hadamard products. We then use these criteria to give a unified proof of the basic majorization inequality for both products. Finally, we introduce natural generalizations of the usual and Hadamard products and show that although these generalizations do not satisfy the majorization inequality, they do satisfy an important weaker inequality that plays a role in establishing their submultiplicativity with respect to every unitarily invariant norm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.