Abstract
Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. Let K(H) denote the ideal of compact operators on H. For any compact operator A let |A|=(A*A)1,2 and S1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeatedaccording to multiplicity. If, for some 1<p<∞, si(A)p <∞, we say that A is in the Schatten p-class Cp and ∥A∥p=1/p is the p-norm of A. Hence, C1 is the trace class, C2 is the Hilbert–Schmidt class, and C∞ is the ideal of compact operators K(H).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.