Abstract
AbstractThe First‐Fit (or Grundy) chromatic number of G, written as χFF(G), is defined as the maximum number of classes in an ordered partition of V(G) into independent sets so that each vertex has a neighbor in each set earlier than its own. The well‐known Nordhaus‐‐Gaddum inequality states that the sum of the ordinary chromatic numbers of an n‐vertex graph and its complement is at most n + 1. Zaker suggested finding the analogous inequality for the First‐Fit chromatic number. We show for n ≥ 10 that ⌊(5n + 2)/4⌋ is an upper bound, and this is sharp. We extend the problem for multicolorings as well and prove asymptotic results for infinitely many cases. We also show that the smallest order of C4‐free bipartite graphs with χFF(G) = k is asymptotically 2k2 (the upper bound answers a problem of Zaker [9]). © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 75–88, 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.