Abstract
In this paper, the Hermitian positive definite solutions of the matrix equation Xs + A*X-tA = Q are considered, where Q is a Hermitian positive definite matrix, s and t are positive integers. Bounds for the sum of eigenvalues of the solutions to the equation are given. The equivalent conditions for solutions of the equation are obtained. The eigenvalues of the solutions of the equation with the case AQ = QA are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.