Abstract

If h(r, θ) is harmonic in the unit circle | r | < 1 and satisfies the condition | h | ≤ 1, then there is a function u(ø) which satisfies | u | ≤ 1 such thatand conversely. Hence, any properties of such harmonic functions should be deducible from equation (1). A number of such properties have been proved by Koebe (Math. Z. 6 (1920), 52–84, 69), using Schwarz's lemma and the geometry of simple conformal transformations. They can be deduced from (1) together with an elementary lemma on the rearrangement of a function (Lemma 1 below). As, however, students of this subject will regard Koebe's method as the one best adapted to establish his theorems, we shall illustrate the alternative method by considering two new problems, namely to find max ∂h/∂r, max ∂h/∂θ, where the maximum in each case is taken for all harmonic functions h which satisfy

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.