Abstract

A boundary value problem in the case of the second order axi-symmetric Young–Laplace differential equation (some of whose solutions describe the static meniscus free surface, i.e. the static liquid bridge free surface between the shaper and the crystal, occurring in single crystal rod growth) is analyzed. The analysis concerns the dependence of the solution of an initial value problem of the equation on a parameter p (the controllable part of the pressure difference Δ p across the free surface). Inequalities are established for p which are necessary or sufficient conditions for the existence of a solution which represents a stable and convex free surface of a static meniscus. The analysis is numerically illustrated for the static menisci occurring in the NdYAG laser single crystal rod growth from the melt by edge-defined film-fed growth (E.F.G.) technique. This kind of inequalities can be useful in the experiment planning and technology design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.