Abstract

Inelastic x-ray scattering data have been collected for liquid sodium at T=390 K, i.e., slightly above the melting point. Owing to the very high instrumental resolution, pushed up to 1.5 meV, it has been possible to determine accurately the dynamic structure factor S(Q,omega) in a wide wave-vector range, 1.5-15 nm(-1), and to investigate on the dynamical processes underlying the collective dynamics. A detailed analysis of the line shape of S(Q,omega), similarly to other liquid metals, reveals the coexistence of two different relaxation processes with slow and fast characteristic time scales. The present data lead to the conclusion that (i) the picture of the relaxation mechanism based on a simple viscoelastic model fails and (ii) although the comparison with other liquid metals reveals similar behavior, the data do not exhibit an exact scaling law as the principle of the corresponding state would predict.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.