Abstract
Probing optical excitations with high resolution is important for understanding their dynamics and controlling their interaction with other photonic elements. This can be done using state-of-the-art electron microscopes, which provide the means to sample optical excitations with combined meV-sub-nm energy-space resolution. For reciprocal photonic systems, electrons traveling in opposite directions produce identical signals, while this symmetry is broken in nonreciprocal structures. Here, we theoretically investigate this phenomenon by analyzing electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) for structures consisting of magnetically biased InAs as an instance of gyrotropic nonreciprocal material. We find that the spectral features associated with excitations of InAs films depend on the electron propagation direction in both EELS and CL, and can be tuned by varying the applied magnetic field within a relatively modest subtesla regime. The magnetic field modifies the optical field distribution of the sampled resonances, and this in turn produces a direction-dependent coupling to the electron. The present results pave the way to the use of electron microscope spectroscopies to explore the near-field characteristics of nonreciprocal systems with high spatial resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.