Abstract

The 162, 164Dy( 3He, d) reactions at E 3He = 46.5 MeV are analyzed using the coupled channels Born approximation (CCBA) and improved form factors derived from a deformed Woods-Saxon potential. The latter are generated using the coupled channels procedure of Rost. The transitions considered populate the 7 2 −[523], 1 2 +[411], 3 2 +[411], 1 2 −[541] and 5 2 + orbitals in 163, 165Ho. Indirect processes induced by inelastic scattering are found to have an influence on the cross sections comparable to that deduced for neutron transfer reactions on rare earth nuclei at lower energies. Considered alone, these can alter the cross sections even of strong transitions by a factor of two and of weaker ones by an order of magnitude. For the weaker transitions equally large changes can result when the improved form factors, rather than conventional spherical Woods-Saxon functions, are used in the calculations. In the examples considered these two effects tend to cancel, often, but not always, resulting in predicted cross sections similar in magnitude to the results of conventional DWBA calculations made with spherical Woods-Saxon form factors. The CCBA angular distributions are generally similar in shape to DWBA predictions, which usually give good fits to the experimental angular distributions over the 0–35° range of the data. Compared with DWBA predictions which use (he same optical parameters, but spherical Woods-Saxon form factors, the CCBA with deformed Woods-Saxon form factors is in better overall agreement with the experimental cross-section magnitudes. However there are a number of cases in which the CCBA, although usually predicting larger cross sections than the DWBA, still underestimates the experimental cross sections by nearly factor of two. These cases all occur in the 71 2 −[541] band or in the strongly Coriolis mixed 1 2 +[411] and 3 2 +[411] bands, and include the majority of transitions populating these orbitals. Since both nuclear structure and reaction mechanism effects are interwoven m the calculations, further data would be most useful in probing the origin of the discrepancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call