Abstract

The thermodynamic properties of the two polytypes of n -hexatriacontane ( n - C 36 H 74 ), single-layered structure Mon and double-layered structure Orth II, have been studied with incoherent inelastic neutron scattering and solubility measurements. The solubility measurements show that Orth II is more stable than Mon, because of its larger entropy. The neutron scattering measurements reveal that the vibrational modes of Orth II shift to the lower frequencies compared with those of Mon in the frequency region below 120 cm - 1 . The vibrational modes in this region make a dominant contribution to the vibrational entropy of a system, and the advantage of Orth II in vibrational entropy due to the low-frequency shifts is estimated to be 7.8 J K - 1 mol - 1 at 288 K under the harmonic approximation, which is in good agreement with the entropy difference between Mon and Orth II determined by solubility measurements. These results suggest that the relative stability of polytypic structures of long-chain compounds is mainly determined by the vibrational entropy of the low-frequency modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.