Abstract

The inelastic neutron scattering (INS) spectrum of polycrystalline Cs2[B12H12] is assigned through 1200 cm(-1) on the basis of aqueous and solid-state Raman/IR measurements and normal mode analyses from solid-state density functional theory. The Cs+ cations are responsible for frequency shifts of the internal cage vibrational modes and I(h) cage mode splittings due to the crystal T(h) site symmetry. These changes to the [B12H12]2- molecular modes make isolated-molecule calculations inadequate for use in complete assignments. Solid-state calculations reveal that 30/40 cm(-1) shifts of Tg/Hg molecular modes are responsible for structure in the INS spectrum unobserved by optical methods or in aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.