Abstract
This two-part paper deals with impact interaction of ships with one-sided ice barrier during roll dynamics. The first part presents analytical and numerical studies for the case of inelastic impact. An analytical model of a ship roll motion interacting with ice is developed based on Zhuravlev and Ivanov non-smooth coordinate transformations. These transformations have the advantage of converting the vibro-impact oscillator into an oscillator without barriers such that the corresponding equation of motion does not contain any impact term. Such approaches, however, account for the energy loss at impact times in different ways. The present work, in particular, demonstrates that the impact dynamics may have qualitatively different response characteristics to different dissipation models. The difference between localized and distributed equivalent damping approaches is discussed. Extensive numerical simulations are carried out for all initial conditions covered by the ship grazing orbit for different values of excitation amplitude and frequency of external wave roll moment. The basins of attraction of safe operation are obtained and reveal the coexistence of different response regimes such as non-impact periodic oscillations, modulation impact motion, period added impact oscillations, chaotic impact motion and rotational motion. The second part will consider experimental validations of predicted results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.