Abstract

Abstract Adhesive bonding offers a simple and efficient way of joining structural components without weakening them by holes or welding. This article develops a new model to predict the fracture load of bonded overlap joints using a fracture mechanics approach. The bondline fracture resistance and effects of the nonlinear inelastic behaviour of structural adhesives are accounted for separately. For bonded single overlap joint configurations the model is expressed as simple explicit formulas. An experimental programme is presented where the design parameters that a designer can adjust to obtain the desired joint capacity are systematically varied. Comparison of test results with the predictions by current strength-of-materials capacity models highlights disparities between the theoretical predictions and experimental evidence. In contrast, the new model shows good agreement with the experimental results. It should be noted that the simple new formulas apply to a well-defined range of bonded overlap joint configurations and do not purport to apply in general to every other joint configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.