Abstract

ABSTRACT The HD molecule is an important coolant in early universe chemistry models and a tracer of H2 in star-forming regions. Rate coefficients for collisional excitation and de-excitation of HD rotational and vibrational levels form important ingredients in astrophysical models. While collisions with He, H2, and H are the most important, available data for H + HD collisions are largely limited to temperatures less than 1000 K for the vibrational ground state, low-lying rotational levels of the v = 1 HD vibrational level, or computed without reactive contributions. Here, through explicit quantum scattering calculations, we report extensive data for rovibrational transitions in HD induced by H atoms for a range of rotational levels in v = 1 and some v = 0 levels for temperatures up to 1000 K. The significance of the computed results for astrophysical modeling is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.