Abstract

Inelastic and charge-transfer excitation processes in collisions between ground-state neutral Mg atoms and K+ ions have been studied by means of a crossed molecular-beam technique. Decay fluorescent emissions from Mg(3 1P1),Mg(4 3S1), and Mg(3s(1)3d(1), 3(3)D3,2,1) as well as the phosphorescent emission due to Mg(3 3P1) have been observed from excited Mg atoms and the charge-transfer emission decays from K(4 2P 3/2,1/2), K(5 2P 3/2, 1/2), K(6 2S 1/2), and K(4 2D 5/2, 3/2) for excited K atoms. The corresponding absolute cross-sections values versus collision energy functions were determined in the 0.10-3.80 keV laboratory energy range. In order to interpret the experimental results, accurate ab initio full configuration-interaction calculations using pseudopotentials have been performed for the (Mg-K)+ system, giving a manifold of adiabatic singlet and triplet potential-energy curves correlating with the different collision channels, which allow a qualitative interpretation of the emission excitation functions measured for the different processes studied. A comparative study with other Mg-alkali ion systems previously studied is also included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call