Abstract

We report a study of the electron tunneling transport in point-contact junctions formed by a sharp Ag tip and two different highly correlated oxides, namely, a magnetoresistive manganite La0.66Ca0.34MnO3 and a superconducting cuprate LaBa2Cu3O7−x. Strong chemical modifications of the oxide surface (supposedly, oxygen ion displacements) caused by applying high voltages to the junctions have been observed. This effect is believed to be responsible for an enormous growth of inelastic tunneling processes across a transition region that reveals itself in an overall V-shaped conductance background, with a strong temperature impact. The mechanism of the inelastic scattering is ascribed to charge transmission across magnetically active interfaces between two electrodes forming the junction. To support the latter statement, we have fabricated planar junctions between Cr and Ag films with an antiferromagnetic chromium oxide Cr2O3 as a potential barrier and at high-bias voltages have found an identical conductance trend with a similar temperature effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.