Abstract

Nonlinear electrical effects in superconducting S-c-S contacts, including the spectroscopy of electron-phonon interactions (EPI) in these systems, and the recovery of the EPI function from experimental data are discussed. The effect of a magnetic field on the current-voltage characteristics (I-V curves) and their derivatives for ErNi2B2C point contacts (PC) with d ≥ ξ (where d is the diameter of the PC and ξ is the coherence length) is studied. It is found that in zero magnetic fields and in near-critical fields, when the size of the superconducting gap can be neglected, the position of the peaks in dV/dI coincides with the peaks in the Yanson EPI spectra. In low fields the peaks are shifted toward lower energies and in intermediate fields, the peaks split. For PC with diameters greater than or on the order of the coherence length, the relative size of the negative phonon contribution to the excess current is considerably greater than in ballistic contacts. This leads to substantial suppression of the high-frequency peaks in the spectra for the superconducting state. In order to recover the EPI function from these spectra it is necessary to correct their intensities at high energies. For “dirty” NbSe2 and Nb point-contacts with d ≥ ξ, which have no phonon features in the second derivative of the I-V curve in the normal state, the EPI can be reconstructed from the superconducting state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.