Abstract

This paper describes a detailed numerical investigation into the inelastic displacement ratios of non-structural components mounted within multi-storey steel framed buildings and subjected to ground motions with forward-directivity features which are typical of near-fault events. The study is carried out using detailed multi-degree-of-freedom models of 54 primary steel buildings with different structural characteristics. In conjunction with this, 80 secondary non-structural elements are modelled as single-degree-of-freedom systems and placed at every floor within the primary framed structures, then subsequently analysed through extensive dynamic analysis. The influence of ground motions with forward-directivity effects on the mean response of the inelastic displacement ratios of non-structural components are compared to the results obtained from a reference set of strong-ground motion records representing far-field events. It is shown that the mean demand under near-fault records can be over twice as large as that due to far-fault counterparts, particularly for non-structural components with periods of vibration lower than the fundamental period of the primary building. Based on the results, a prediction model for estimating the inelastic displacement ratios of non-structural components is calibrated for far-field records and near-fault records with directivity features. The model is valid for a wide range of secondary non-structural periods and primary building fundamental periods, as well as for various levels of inelasticity induced within the secondary non-structural elements.

Highlights

  • The seismic performance of non-structural components (NSCs) plays a key role in the quantification of economic losses in the aftermath of earthquakes, and the related cost could even surpass that of the full replacement of a collapsed building (Filiatrault et al 2002)

  • It is recommended to use the proposed equation within the scope it was developed. This investigation examined the inelastic behaviour of non-structural components (NSCs) mounted within multi-storey steel framed buildings, through the determination of inelastic displacement ratios (CR)

  • Particular attention was given to the effects of near-fault strongmotion with forward-directivity effects, which are commonly characterized by the presence of velocity pulses

Read more

Summary

Introduction

The seismic performance of non-structural components (NSCs) plays a key role in the quantification of economic losses in the aftermath of earthquakes, and the related cost could even surpass that of the full replacement of a collapsed building (Filiatrault et al 2002). The lower ranges are typically used for mechanical and electrical equipment, while the higher values are usually associated with ‘high-deformability elements’, such as piping and ductwork Another approach for the design of accelerationsensitive NSCs in structures involves the use of bracing elements that act as fuses during severe earthquake ground motions (Miranda et al 2018; Kazantzi et al 2020a, b). These approaches make the behaviour less dependent on the NSC typology (i.e., flexible or rigid) and its nonlinear performance, and readily suit the development of engineering tools that facilitate the design of such components including inelastic displacement ratios of NSCs (Obando and Lopez-Garcia 2018)

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call