Abstract

In this study, we present an inelastic demand spectrum for the design of seismically-isolated structures using lead-rubber bearings or other types of isolators with bi-linear hysteresis loops and the inelastic spectrum can be used in the design of seismically-isolated structures in a very similar manner to capacity spectrum method. The inelastic demand spectrum is a very useful design tool for visual selection of optimal isolation parameters, and eliminates the use of equivalent linear-elastic substitute structures as the displacement demand is obtained from nonlinear time history analysis. The responses of seismically-isolated structures subjected to near-source ground motions with either large forward-directivity pulses or fault-fling pulses are presented. Our analyses suggest that seismic isolation can be used to protect structures subjected to recorded ground motions currently available to us, with acceptable levels of base shear coefficient and isolator displacement, except for one component of the TCU068 record from the 1999 Chichi, Taiwan, earthquake (which contained a large permanent displacement of nearly 10 m).

Highlights

  • Seismic isolation has been used to protect structures from severe earthquake attack in many countries and is well accepted as an effective means to enable continuous use of the structure during and immediately after severe ground shaking.In current design practices for seismically-isolated structures, an equivalent linear elastic structure with an effective period and an equivalent viscous damping ratio accounting for energy dissipation due to inelastic deformation of isolators is usually used for preliminary design

  • We present the inelastic demand spectra for near-source records with either forward-directivity or fault-fling pulses in order to discuss the appropriateness of seismic isolation for, and the response of seismically-isolated structures to, near-source records

  • The following conclusions can be reached in the present study, 1) Inelastic demand spectra were developed for seismic isolation systems with bi-linear force-displacement hysteresis loops

Read more

Summary

SUMMARY

We present an inelastic demand spectrum for the design of seismically-isolated structures using lead-rubber bearings or other types of isolators with bi-linear hysteresis loops and the inelastic spectrum can be used in the design of seismically-isolated structures in a very similar manner to capacity spectrum method. The inelastic demand spectrum is a very useful design tool for visual selection of optimal isolation parameters, and eliminates the use of equivalent linear-elastic substitute structures as the displacement demand is obtained from nonlinear time history analysis. The responses of seismically-isolated structures subjected to near-source ground motions with either large forward-directivity pulses or fault-fling pulses are presented. Our analyses suggest that seismic isolation can be used to protect structures subjected to recorded ground motions currently available to us, with acceptable levels of base shear coefficient and isolator displacement, except for one component of the TCU068 record from the 1999 Chichi, Taiwan, earthquake (which contained a large permanent displacement of nearly 10 m)

INTRODUCTION
Findings
CONCLUSIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.