Abstract

A stainless steel leaf spring is designed and constructed followed by its performance evaluation by experiment and non-linear analysis so that an insight into the optimum use of material can be made. Cantilever beams of uniform strength, popularly termed as leaf springs, undergo much larger deflections in comparison to a beam of constant cross-section; that needs inclusions of geometric non-linearity for rigorous analysis. This study deals with such a cantilever beam, but takes into account the material non-linearity as well. Experiments were conducted for such a cantilever beam, with highly non-linear stress-strain curves. In addition to the experiment, a computer code in ‘C’ has been developed using the Runge-Kutta technique for the purpose of simulation. Effective modulus-curvature relations are obtained from the non-linear stress-strain relations for different sections of the beam and used for the analysis. It is seen that non-linear stress-strain curve governs the bending of the beam. Importantly, non-linear analysis shows the stresses are not so high as predicted by the linear theory without end-shortening. Moreover, the tensile and compressive stresses are different in magnitude and both decrease along the span. Experimental load-deflection curves are found to be initially concave upward but, non-linear and convex upward at a high load. Comparison of the numerical results with the available experimental results from another research group and theory shows excellent agreement verifying the soundness of the entire numerical simulation scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call