Abstract

AbstractSeismic performance of extended pile-shafts depends not only on the intensity of the earthquake ground motion, but also on the pile structural properties and the soil conditions surrounding the pile. For assurance of good foundation performance, damage can be controlled by limiting the curvature ductility demand in the yielding region of the pile. However, curvature ductility demand is influenced by the strength and stiffness of the pile and the soil, and the ability of the soil-pile system to distribute the inelastic deformation in the pile. The pile curvature distribution can be written in the form of a nonlinear differential equation, including the effects of the pile yielding, soil nonlinearity, and secondary P-Δ moment arising from the axial load. A solution to the differential equation lends itself to the pile deflection, pile internal forces, soil pressure distribution, and, more importantly, the inelastic curvature distribution in the pile. The overall response in terms of a lateral force ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call