Abstract

The underlying micromechanism remains to be clarified for the bulk inelastic behaviour of specific ceramics under impact loads. In this study, the silicon carbide materials were subjected to the split-Hopkinson pressure bar compression in which the strain rate was not constant but increased to the dynamic level at high stresses. The inelastic deformation occurs in the high strain rate stage in compression, followed by the final transgranular fracture. The post-test fragments were examined in both the SEM and high resolution TEM. It was found that macroscopic inelastic behaviour is dominated by the dislocation motion and the localised amorphisation that arise at high strain rates. The damage and thus the degraded modulus in the dynamic inelastic deformation were incorporated to modify a dynamic fragmentation model to evaluate the fragment size as a function of strain rates. The modified model more accurately predicts the size of fragments produced at high strain rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call