Abstract

Evaluating the capability of elastic Load Patterns (LPs) including seismic codes and modified LPs such as Method of Modal Combination (MMC) and Upper Bound Pushover Analysis (UBPA) in estimating inelastic demands of non deteriorating steel moment frames is the main objective of this study. The Static Nonlinear Procedure (NSP) is implemented and the results of NSP are compared with Nonlinear Time History Analysis (NTHA). The focus is on the effects of near-fault pulselike ground motions. The primary demands of interest are the maximum floor displacement, the maximum story drift angle over the height, the maximum global ductility, the maximum inter-story ductility and the capacity curves. Five types of LPs are selected and the inelastic demands are calculated under four levels of inter-story target ductility (μ t) using OpenSees software. The results show that the increase in μ t coincides with the migration of the peak demands over the height from the top to the bottom stories. Therefore, all LPs estimate the story lateral displacement accurately at the lower stories. The results are almost independent of the number of stories. While, the inter-story drift angle (IDR) obtained from MMC method has the most appropriate accuracy among the other LPs. Although, the accuracy of this method decreases with increasing μ t so that with increasing number of stories, IDR is smaller or greater than the values resulted from NTHA depending on the position of captured results. In addition, increasing μ t decreases the accuracy of all LPs in determination of critical story position. In this case, the MMC method has the best coincidence with distribution of inter-story ductility over the height.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.