Abstract
We measure inelastic three-body and two-body collisional decay rates for a two-component Fermi gas of 6Li, which are highly suppressed by the Pauli exclusion principle. Our measurements are made in the BEC-BCS crossover regime, near the two-body collisional (Feshbach) resonance. At high temperature (energy) the data show a dominant three-body decay process, which is studied as a function of bias magnetic field. At low energy, the data show a coexistence of two-body and three-body decay processes near and below the Feshbach resonance. Below resonance, the observed two-body inelastic decay can arise from molecule-atom and molecule-molecule collisions. We suggest that at and above resonance, an effective two-body decay rate arises from collisions between atoms and correlated (Cooper) pairs that can exist at sufficiently low temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.