Abstract

We have considered here a novel particular model for dynamics of a non-rigid asteroid rotation, assuming the added mass model instead of the concept of Viscoelastic Oblate Rotators to describe the physically reasonable response of a ‘rubble pile’ volumetric material of asteroid with respect to the action of a projectile impacting its surface. In such a model, the response is approximated as an inelastic collision in which the projectile pushes the ‘rubble pile’ parts of the asteroid together to form a mostly solidified plug in the crater during the sudden impact on the asteroid’s surface. Afterwards, the aforementioned ‘solidified plug’ (having no sufficient adhesion inside the after-impact crater) will be pushed outside the asteroid’s surface by centrifugal forces, forming a secondary rotating companion around the asteroid. Thus, according to the fundamental law of angular momentum conservation, the regime of the asteroid’s rotation should be changed properly. Namely, changes in rotational dynamics stem from decreasing the asteroid’s mass (due to the fundamental law of angular momentum conservation). As the main finding, we have presented a new solving procedure for a semi-analytical estimation of the total mass of the aforementioned ‘solidified plug’, considering the final spin state of rotation for the asteroid with minimal kinetic energy reduced during a long time period by the inelastic (mainly, tidal) dissipation. The asteroid is assumed to be rotating mainly along the maximal inertia axis with a proper spin state corresponding to minimal energy with a fixed angular momentum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call