Abstract

Columns under natural fire conditions are usually exposed to non-uniform temperature distribution in the longitudinal direction. The motivation for this study stems from zone modeling of a compartment fire where the gas layers are artificially divided into two zones, viz. the hotter upper zone and the cooler lower zone. However, for field modeling of a compartment fire, more detailed information of temperature distribution can be obtained. The difference in temperature between the top and bottom ends of a column can be quite significant, particularly prior to flashover condition. Depending on the required accuracy, one example due to piece-wise step distribution in the longitudinal direction is analyzed in this paper and compared with experimental results. This represents more realistically the thermal response of a column which experiences greater temperature variation with increasing height. In this paper, the inelastic stability of a pin-ended steel column under non-uniform temperature distribution is studied analytically. Across a column section, the temperature is assumed to be uniform. Two linear elastic springs connected to the column ends simulate axial restraints from adjoining unheated structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.