Abstract

Oscillatory flow patterns have been observed in many different driven many-particle systems. It seems reasonable to assume that the emergent oscillations in opposing flows are due to or related to an increased efficiency (throughput). In this contribution, however, we will study intersecting pedestrian and vehicle flows as an example for inefficient emergent oscillations. In the coupled vehicle–pedestrian delay problem, oscillating pedestrian and vehicle flows form when pedestrians cross the street with a small time gap to approaching cars, while both pedestrians and vehicles benefit, when they keep some overcritical time gap. That is, when the safety time gap of pedestrians is increased, the average delay time of pedestrians decreases and the vehicle flow goes up. This may be interpreted as a slower-is-faster effect. The underlying mechanism of this effect is explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.