Abstract

BackgroundThe cationic lipid Genzyme lipid (GL) 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo.MethodsAnti-lacZ and ENaC (epithelial sodium channel) siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides.ResultsIn vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to β-galactosidase reduced βgal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected.ConclusionThis study suggests that although siRNAs and asODNs can be developed to inhibit gene expression in culture systems and certain organs in vivo, barriers to nucleic acid transfer in airway epithelial cells seen with large DNA molecules may also affect the efficiency of in vivo uptake of small nucleic acid molecules.

Highlights

  • The cationic lipid Genzyme lipid (GL) 67 is the current "gold-standard" for in vivo lung gene transfer

  • Stability of siRNAs and asODNs following exposure exhaled breath condensate (EBC) Nucleic acids are prone to nuclease degradation

  • The stability of phosphorothioated asODN, in a variety of body fluids is well described, but neither the stability of asODNs or siRNAs has been studied in airway surface liquid (ASL), a potential barrier to transfection of the airway epithelium

Read more

Summary

Introduction

The cationic lipid Genzyme lipid (GL) 67 is the current "gold-standard" for in vivo lung gene transfer. The first asODN-based drug (Vitravene) for the treatment of cytomegalovirus (CMV)-induced retinitis in AIDS patients has been approved [1], and several phase I, II and III trials for the treatment of cancer and a variety of inflammatory conditions are currently ongoing. AsODNs have been considered for treatment of a variety of lung diseases including asthma and other pulmonary inflammatory diseases and have shown some efficacy in pre-clinical models after nebulisation, intratracheal injection, intravenous or intraperitoneal administration. The use of RNAi as a therapeutic approach is in its infancy, but several organs, including liver, eye, lung, brain, skeletal muscle, as well as tumours, have been targeted successfully in vivo

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call