Abstract

A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species isolated from membranes tolerated exposure to high salt concentrations at pH range of 7–8. In addition, the overall findings of the study indicate that SWRO membranes can be operated in Gulf seawater at a recovery of 30 % without using any chemicals, such as coagulant, disinfectant and antiscalant, for an acceptable period of time without performing membrane cleaning. This is highly likely, if media filters are used in the pretreatment and SWRO membranes are operated at normal flux and recovery ratio.

Highlights

  • A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and minimizing/ eliminating the need for chemical cleaning

  • The feed to the membrane was raw seawater which was passed through a single stage sand media filter followed by a cartridge filter of 5 l pore size with only the addition of sulfuric acid to maintain the pH at about 7

  • The single-membrane element water recovery exceeded 10 %, which is the maximum recommended value in normal cases. These stringent conditions were used to accelerate the fouling on membranes and to gather sufficient baseline data on the chemical cleaning of the membrane with respect to performance restoration

Read more

Summary

Introduction

Abstract A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and minimizing/ eliminating the need for chemical cleaning. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call