Abstract
We apply an interpretable machine learning model, the LassoNet, to forecast and trade U.S. industry portfolio returns. The model combines a regularization mechanism with a neural network architecture. A cooperative game-theoretic algorithm is also applied to interpret our findings. The latter hierarchizes the covariates based on their contribution to the overall model performance. Our findings reveal that the LassoNet outperforms various linear and nonlinear benchmarks concerning out-of-sample forecasting accuracy and provides economically meaningful and profitable predictions. Valuation ratios are the most crucial covariates, followed by individual and cross-industry lagged returns. The constructed industry ETF portfolios attain positive Sharpe ratios and positive and statistically significant alphas, surviving even transaction costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.